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1. Abstract

Geodtatistical site characterization often requires the simultaneous modeling of numerous correlated
variables. Reproducing complex features such as non linearity, stoichiometric constraints and
heteroscedasticity is difficult. The multivariate probability distribution must be discretized and used
directly in the construction of numerical models. In presence of clustered and/or biased data, it is
necessary to scale these multivariate distributions to representative univariate distributions. A
multivariate scaling approach is developed that preserves multivariate features whilst imposing
representative univariate distributions.

Most geostatistical techniques do not permit the direct input of a multivariate distribution. The
multivariate Gaussian model istoo smple; it does not permit use of realistic multivariate distributions.
A stepwise transformation approach could be used as a pre-processing step to establish variables that
are univariate Gaussian. The stepwise approach requires an equal sampling of the different variables
and samples of the same scale; an adternative must be considered when these conditions are not met.
The direct approach, based on the simple cokriging principle and covariances, could be combined with
the multivariate digtribution scaling approach for cosimulation. These alternatives are developed and
guidelines presented for their application.

2. I ntroduction

Geostatistical simulation is used in several areas of the earth sciences to quantify uncertainty in
minera resources (Journel, 1974), assess the risk of exceeding critical thresholds in contamination
studies (Kyriakidis and Journel, 2001), provide multiple possible realizations of the petrophysical
properties of a petroleum reservoir for flow simulation (Deutsch, 2002), etc. In most of these cases,
multiple variables have been measured at sample locations and should be used jointly to improve the
prediction of the variables at unsampled locations. Furthermore, these variables may have different
volumetric supports. Integration of information from multiple sources requires the use of multivariate
techniques (Wackernagel, 2003). However, most of these techniques rely on some Gaussian
assumption that makes it difficult to handle complex relationships such as non linearity, stoichiometric
constraints and heteroscedasticity. A Gaussian alternative that allows reproducing these features is the
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stepwise conditional transformation (Leuangthong and Deutsch, 2003); however, integration of data at
different support remains a limitation for this method.

This paper discusses some of the issues encountered when dealing with complex multivariate
distributions that cannot be correctly handled by conventional multivariate techniques. The direct
approach to simulate random variables is presented. Since in this framework it is possible to
determine the conditional distributions for each variable, there is a need to update the multivariate
distribution, honouring both the representative univariate distributions and the characteristic features
of the multivariate relationships. An iterative approach is proposed and illustrated for a smple
example; the approach could be implemented in a sequential direct cosimulation framework to handle
simulation of complex multivariate relationships.

3. Direct Approach to Multivariate Simulation

Direct simulation, that is, simulating a variable without having to work with a transformation of it, has
been an important research area in geogtatistics (Caers, 2000; Journel, 1993; Oz & al., 2003; Soares,
2001).

The advantage of considering a direct approach is that multiscale data can be easily integrated in
simulation. Transformation to normal scores impedes the use of block data or the direct simulation at a
different support from the sample data, because averages of the transformed data do not trandlate into
the correct averages in the original variables. Working in direct space allows immediate integration
and use of data at different scale, without biasing the averages when a simulation at a different support
is performed.

The paradigm of direct simulation relies on the fact that, as long as the simulation is done sequentially,
covariance reproduction is ensured when the simulated values are generated from a conditional
distribution whose mean and variance are calculated by simple kriging from the sample data and
previousdy simulated nodes (Journel, 1993). The main question and one of the problems of direct
sequential simulation is the reproduction of the global histogram: although any shape is allowed in the
conditional distributions for covariance reproduction, these shapes determine the final histogram of
the realizations. It is necessary to have an approach for obtaining a set of conditional distributions that
will return the right histogram after sequentially drawing from them. A solution consists on using the
Gaussian transform instrumentally to get a set of conditional distribution shapes, parameterized by
their conditional means and variances (Oz et a., 2003). The procedure consists of building a lookup
table where a mean and variance in original units is linked to a conditional distribution shape. The
conditional distributions in original units are obtained by back-transforming the quantiles of a
non-standard Gaussian distribution, using the link between the global digtribution and a standard
Gaussian distribution (the conventional normal score transformation table). The back-transformed
guantiles of the non-standard Gaussian distribution can be numerically integrated to get the mean and
variance of the distribution in original units, hence that conditional distribution is parameterized by
these two values.
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Direct sequential simulation proceeds just as sequential Gaussian simulation. The nodes are visited
randomly and at every node the mean and variance of the conditional distribution in original units are
calculated by simple kriging of the data and previousy simulated nodes. Then, a conditional
distribution is retrieved from the lookup table and used to draw the simulated value that will condition
all subsequently simulated values. This method has proven to perform well (Oz et al., 2003) hence this
principle can be extended to multivariate simulation. Multivariate simulation requires the knowledge
of the multivariate conditional distribution. This distribution is characterized by the vector of
conditional means, the conditional variance-covariance matrix, and its shape.

Conditional means and variance-covariance matrix can be obtained by solving a cokriging system.
Consider a set of variables v,,....Y, and assume, without loss of generality, that their means are zero.

These variables can have any volumetric support denoted as {Vp(uf);a :].,...,np;p:l,...,P} and are

centered at locations {uf;a =1...,n,; p:L...,P}. We can write the cokriging estimate (the conditional

mean) and the estimation variance at alocation u and with asupport V,(u) as:
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The mean and variance are calculated by solving the following system of equations:
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Cokriging provides the parameters to obtain the univariate conditional distributions for all variables
using the lookup table previously described, however, the entire conditional multivariate distribution
cannot be retrieved. The next section presents an approach to scale the global multivariate distribution
in order to honour the univariate conditional distributions and the characteristics of the multivariate
relationship.

Note that Gaussian methods impose a multivariate behaviour which is linear and homoscedastic,
which may be deemed inappropriate. Furthermore, Gaussian simulation does not allow integrating

block data or directly simulating at block support.

4. A M ultivariate Scaling Approach

Honouring the multivariate features is a key aspect to predict the risk when multiple variables are
relevant in a response variable. The shape of the multivariate global distribution is used as a reference
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for characterizing the shapes of the conditional multivariate distributions. The iterative approach
proposed in this section takes the global multivariate distribution and iteratively scales it. Initially, the
scaling is done by using the product of the ratios between the probability densities of the global
univariate distributions to the density of the conditional univariate distributions. Subsequently, the
ratio considers the updated univariate distribution, which is computed by integrating the updated
multivariate distribution obtained after this iteration, and the target conditional univariate distribution.
The updating is repeated until a good match of all relevant satistics is achieved: means and variances
of the univariate conditional distributions, and correlations between pairs of variables.

Let £, (Vi...Y») be the global multivariate distribution, f%(y,),"i=1..,P the global univariate

distributions, and  f’(y;)," i =1,...,P the univariate conditional distributions. The updating

technique can be summarized in the following steps for a P -variate distribution:
1. Setk=1.
2. Update the multivariate global distribution by the ratios of the univariate conditional
distributions to the current univariate distributions, thet is:

£ (y;)
£y s ¥p) = R0 (Yoo yp)>O D)
3. Obtain the updated univariate distributions by integrating the multivariate conditional
distribution:
£ = O-Of sy (Vioeenr Vo) Ay 0y .0y "i=1..P

4. Calculate summary statistics: means and variances of the updated univariate distributions and
correlation coefficients between variables of the updated multivariate distribution.

5. Check if these statistics match the parameters of the univariate conditional distributions and
conditional multivariate distribution within some tolerance. If this condition is matched, then
stop; otherwise, set k=k+1 and goto 2.

5. Example

A smple example is presented to show the performance of the scaling approach for a non-linear
relationship between Ni and Fe from a nickel laterite deposit. This is illustrated using the bivariate
frequency plot shown in Fig. 1. The globa bivariate frequency resulting from the multivariate scaling
gpproach is aso shown in Fig. 1. A visual comparison of the bivariate frequencies shows good
reproduction of the bivariate features, with the reference correlation of 0.091 and the updated correlation
coefficient of 0.088. A comparison of the reference and the updated univariate cumulative distribution
function for Ni and Fe shows virtually exact reproduction of the univariate atistics.
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6. Implementing Direct Sequential Cosimulation of M ultiscale Data

Implementing this scaling approach in the direct sequential simulation framework for multiple variables
measured at different supports calls for (1) the cokriging formalism for multiscale data, (2) the
determination of the conditional distributions linked only to their conditional means and variances through
the lookup table as proposed by Oz et al. (2003), (3) the use of the iterative scaling approach proposed in
the previous section, and (4) drawing from the multivariate distribution by Monte-Carlo simulation one
variable at atime with increasing levels of conditioning. The main steps are summarized below:

Reference Giobal Ni-Fe Frequency Distrituiion _ Updated Global Mi-Fe Frequency Distribution
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Fig. 1. Multivariate scaling using a nickel laterite data set: comparison of reference and updated
global bivariate distribution (top row) and univariate Ni and Fe distributions (bottom row).

1. Define a random path to visit the uninformed locations to simulate. These do not have to be
necessarily at point-support.
2. At eachlocation in the path:

a. Perform a search of al nearby original data of any variable and at any scale and
previously simulated locations.

b. Determine the conditional means and variances of each variable by a smultaneous
cokriging of all variables.

c. Obtain the univariate conditional distribution of each variable.

d. Obtain the multivariate conditional distribution using the iterative scaling approach
proposed, honouring the univariate conditional distributions and the multivariate
relationships found in the global multivariate distribution.

e. Draw asimulated vector from the multivariate conditional distribution as follows:

i. Draw asimulated value for one variable from one of the univariate conditional
distributions.

ii. Draw a simulated value for another variable using the conditional distribution
given the value drawn for the first variable.
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iii. Repeat increasing the level of conditioning until the full vector has been
simulated.
f. Visit the next location.

7. Conclusions

An approach to scale a multivariate distribution is presented that allows characterizing conditional
distributions that honour the conditional univariate distributions and the relationship between the
variables as depicted in the global multivariate digtribution. The approach works iteratively, by
modifying the global multivariate distribution with the product of ratios between the univariate
probability densities of the conditional univariate distribution to the global univariate distribution.
Once repeated enough times, this updating technique leads to multivariate distributions whose
marginals are the correct univariate conditionals and the correlation and features between multiple
variables are reproduced. The scaling algorithm could be used in a direct sequential simulation
framework to alow simulation of multivariate multiscale data. An integrated approach has been
presented, where the direct paradigm is presented in all generality. This approach promises to be a
powerful alternative to the limitations of multivariate Gaussian simulation.
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